Surface plasmon resonance monitoring of temperature via phase measurement

نویسندگان

  • H.-P. Chiang
  • H.-T. Yeh
  • C.-M. Chen
  • J.-C. Wu
  • S.-Y. Su
  • R. Chang
  • Y.-J. Wu
  • D. P. Tsai
  • S. U. Jen
  • P. T. Leung
چکیده

The application of surface plasmon resonance to the monitoring of the temperature of a metal film and its environment is well-established. A new feature in our present experimental work is to carry out this monitoring via the measurement of the phase difference between a s and a p-polarized wave at different wavelengths, 632.8 nm and 1.15 lm, based on a technique established previously in the literature. By monitoring the change of this phase as a function of the film temperature, it is found that this approach leads to very sensitive measurements of temperature, in comparison with previous approaches in which reflectance was measured instead. Sensitivity is 0.027 K at incident wavelength of 632.8 nm and 0.1 K at incident wavelength of 1.15 lm. A simple model based on the temperature dependence of the optical constants of the metal is applied to simulate our measurements, and it is found that the general qualitative behavior and trend of the experimental results can be reasonably accounted for using such a model. 2004 Elsevier B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

اثرات گرما_نوری پلاسمون های سطحی

Surface plasmon resonance sensors have been widely considered due to their sensitivity, accuracy and response speed. In order to stimulate surface plasmons, a crisman structure is used in which the metal layer (mainly gold or silver) is placed on the surface of the prism. Due to temperature changes, various factors such as optical properties of the metal, the prism and the surrounding environme...

متن کامل

The effect of temperature on optical absorption cross section of bimetallic core-shell nano particles

In this paper, the temperature dependence on optical absorption cross section of the core shell bimetallic nanoparticles (NPs) is investigated in quasi static approximation. Temperature dependence of the plasmon resonance is important issue because of recent applications of NPs of noble metal for heat treating of cancer and the computer chips. The effect of temperature on surface plasmon resona...

متن کامل

Effects of temperature on the surface plasmon resonance at a metal–semiconductor interface

The effects due to elevated temperatures on the surface plasmon (SP) at a metal–semiconductor interface are studied both experimentally and theoretically. In particular, a junction made of silver and amorphous silicon is fabricated and the interfacial plasmon is excited optically via the Kretschmann geometry. Both the reflectance and phase monitoring of the response of the junction have been st...

متن کامل

Fabrication and Characterization of the Fiber Optical Taper for a Surface Plasmon Resonance Sensor

For a fiber optical surface plasmon resonance (SPR) sensor a short part of its cladding should be removed to coat a thin layer of a metal. Usually this is problematic when an optical fiber with small core diameter is used. In this paper, a new method using µliter droplet of the HF acid for short fiber optical taper fabrication is reported. Using this method in a multi-mode optical fiber w...

متن کامل

Antibody Conjugated Gold Nanoparticles for Detection of Small Amounts of Antigen Based on Surface Plasmon Resonance (SPR) Spectra

In this paper, a fast and sensitive localized surface plasmon resonance (LSPR) based biosensor was developed and the optimization of gold – antibody conjugates through investigation of different parameters were performed. Gold nanoparticles (AuNPs) with a size of ~20 nm were synthesized via chemical reduction of HAuCl4 with trisodium citrate as reducing and stabilizing agent. The impacts of pH ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004